
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Implemention of Hash Function and Asymmetric Key

Encryption to Prevent Memory Tampering in Game's

Anti-Cheat Systems

Zeki Amani - 13524082

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: Zekiamanioke@gmail.com, 13524082@std.stei.itb.ac.id

Abstract—Cheating has always been a big problem in the

gaming industry. One of the method cheaters uses is by doing

memory tampering. To prevent memory tampering, this paper

will explore the use of cryptographic techniques such as hash

functions and asymmetric key encryption to be implemented in a

user-level anti-cheat system with the assumption that we can make

a process that is hidden from hackers and hacker can’t put

breakpoint in our game program.

Keywords—Anti-cheat, Cryptography, Digital signature, RSA,

sha-256, memory tampering, number theory, game

I. INTRODUCTION

Video games are the ultimate form of entertainment media.
Playing video games gives you an absolute sensation of
immersion. It’s not surprising to see that in this era, the act of
playing video games — commonly called gaming — has been
getting more and more mainstream. The gaming industry is
inevitably growing so fast these past years. In 2024, the revenue
of the worldwide gaming market was estimated to be 455 billion
U.S. dollars[6].

While the gaming industry kept growing, there lies a
challenging problem game developers had to tackle, and that is
cheating. Cheating has become one of the biggest and oldest
problems in the gaming industry. This problem takes away the
fun and fairness from many games, especially in online
competitive games. Not only does it affect the players, but it can
also impact the developer's revenue, as it threatens income from
in-app purchases. Moreover, the number of players leaving the
game can increase significantly if cheaters are left loose. With
that, the need for anti-cheat is inevitable.

One of the simplest yet effective methods to cheat is to
manipulate — tamper — the game’s memory. That’s why an
anti-cheat system that prevents memory tampering is needed. In
this paper, author will discuss about memory tampering as a
method of cheating, also how to prevent it by implementing
cryptographic techniques such as hash functions and asymmetric
key encryption in a user-level anti-cheat system.

II. THEORETICAL FOUNDATIONS

Before stepping farther, it’s important to understand the
theorical foundation behind this implementation.

A. Number Theory

Number theory is a branch of pure mathematics that deals
with the study of integers and functions of integers[1]. Which
includes the study of prime numbers, greatest common divider,
modular arithmetic, and more. These concepts are important to
understand the implementation of hash functions and
asymmetric key encryption.

1) Greatest Common Divider
 The greatest common divisor (gcd) of a and b is the
largest integer d such that d divides a and d divides b.

2) Co-prime
Two integers a and b are said to be co-prime if the

greatest common divisor of a and b eal to 1

3) Modular arithmetic
 Suppose a and m are integers (0 < r < m.). Equation (1)
gives the remainder r of the operation a divided by m.

𝑎 𝑚𝑜𝑑 𝑚 = 𝑟 ()

4) Modular Congruence
 Suppose a and b are integers and m is a number > 0,
then 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) if and only if m divides 𝑎 − 𝑏 means
a and b congruence in m

5) Inverse modulo

If a and m are relatively prime and m > 1, then the

inverse of 𝑎 (𝑚𝑜𝑑 𝑚) exists. The inverse of 𝑎 (𝑚𝑜𝑑 𝑚) is

an integer x such that

𝑥𝑎 ≡ 1 (𝑚𝑜𝑑 𝑚) (2)

6) Prime

A positive integer p (p > 1) is called a prime number if

the divisor is only 1 and p[1][2].

mailto:Zekiamanioke@gmail.com
mailto:13524082@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B. Asymmetric Key Encryption

 Asymmetric encryption, also known as public-key
cryptography, is a type of encryption that uses a pair of keys to
encrypt and decrypt data. The pair of keys includes a public key,
which can be shared with anyone, and a private key, which is
kept secret by the owner[9].

Fig 2.1 How Assymmetric Encryption Works

Source: https://www.thesslstore.com/blog/wp-
content/uploads/2020/12/how-asymmetric-encryption-

works.png

C. RSA Encryption

RSA is the most popular Asymmetric key encryption
algorithm. This algorithm was founded by three researchers
from MIT (Massachusetts Institute of Technology), namely
Ronald Rivest, Adi Shamir, and Leonard Adleman, in 1976.
The idea behind this algorithm is the fact that it is very
difficult to factorize a large integer into its prime factors.
Because of that, it’s almost impossible to find the private key
even if the public key is known.

Here is the algorithm to produce a pair of keys:

1. Choose pair of two different prime number p and q,

2. Calculate 𝑛 = 𝑝𝑞, here n is the modulo that will be
used to encrypt and decrypt,

3. Calculate 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1),

4. Choose an intenger number e that is a coprime of
𝜙(𝑛). This number will be used as the encryption
key,

5. Calculate d as the inverse modulo of
𝑒 (𝑚𝑜𝑑 𝜙(𝑛)). This number will be used as the
decryption key.

Equation (3) here is used to encrypt the data and (4) is used
to decrypt the data back to plain text

𝑐 = 𝑚𝑒 (𝑚𝑜𝑑 𝑛) (3)

𝑚 = 𝑐𝑑 (𝑚𝑜𝑑 𝑛) (4)
Message can be split into smaller blocks if the original message
is not just 1 block. [4]

D. Hashing Function

Hashing function is an irreversible function that
compresses a message (M) of arbitrary size into a string (h)

of fixed size. hashing function 𝐻(𝑥) have these following
properties

1. Collision resistance: it is very difficult to find two
inputs a and b such that 𝐻(𝑎) = 𝐻(𝑏),

2. Preimage resistance: for any output y, it is difficult
to find input a such that 𝐻(𝑎) = 𝑦,

3. Second preimage resistance: for any input a and
output y = H(a), it is difficult to find a second input
b such as 𝐻(𝑏) = 𝑦[3].

E. SHA-256

Secure Hashing Algorithm (SHA) is the standard algorithm

used for irreversible hash function developed by NIST. SHA-

256 belongs to the SHA 2 family, developed to be the successor

to SHA-1 because SHA-1 family has already considered

unsecure because of brute force attacks[10]. SHA-256 function

takes the input of plain text and hash into 256-bit length hash

value. Sha-256 is one of the most secure hashing function,

that’s why it’s being used in many applications.

F. Integrity Check

One of the most popular application of hashing

functions is for integrity check. Integrity check is a

validation process to make sure a message or data is not

modified. This is because cryptographical hash function is

a one-way function[7]. This means if the hashed value is

known, it’s impossible to find or calculate the actual value.

It also utilizes the fact that hash function is very sensitive to

change, which make it easier to check if data is being

modified[3].

G. Authenticity Assurance

Asymmetric key encryption algorithms — like RSA

— can be implemented to assure the authenticity of a

message. This is because, if encryption key is being used as

private key and decryption key is used as public key, only

the authorized entities with private key can encrypt a

message. Because it is very hard to find the private key if

public key is known, then we can assure that the encrypted

data being sent is in fact from authorized person.

H. Digital Signature

A digital signature is a mathematical technique used to

validate the authenticity and integrity of a message,

software, or digital document[8]. Using two techniques

mentioned before — asymmetric key encryption and hash

function — we can achieve this. The digital signature

consists of 2 main algorithms

1) Signing

When signing a message, the sender will first make a

hash of the message. Then by using private key, the sender

encrypts the hashed message. After all that, the sender will

send the digital signature and message to the receiver. With

this the authenticity of the sender can be assured.

2) Verification

https://www.thesslstore.com/blog/wp-content/uploads/2020/12/how-asymmetric-encryption-works.png
https://www.thesslstore.com/blog/wp-content/uploads/2020/12/how-asymmetric-encryption-works.png
https://www.thesslstore.com/blog/wp-content/uploads/2020/12/how-asymmetric-encryption-works.png

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

After receiving both the digital signature and the

message, the receiver will verify the integrity of the

message. This is done by decrypting the digital signature

with public key, hashing the message sent, and checking if

the decrypted message is the same as the hashed message.

Fig 2.2 How Digital Signature Works

I. Memory Tampering

This is where our biggest vulnerability lies. Just like any
other computer programs, games have their own memory
allocation. in these memories, the program will allocate the
value of important things like score, money, and many other
things that can affect the gameplay. If hackers manage to modify
these important values, unexpected behavior will occur, like
changing the current money into the user’s desire and many
other cases.

J. Debugging and Memory Scan

Debugging is the activity to examine a running process. By
attaching a debugger to a process, user can examine the
program’s past, current, and upcoming execution. While
debugging, user also can read and write at the memory of the
attached process. With that, if the user manages to understand
the flow of the program, he can easily change any value the user
wanted. But this method is harder to do, because it requires user
to understand how the program works.

Another technique that is easier and more commonly used to
do memory tampering is by using memory scanners. Just like
debugging, user can read and write the currently running
programs, but user doesn’t even need to understand how the
program works. This is how it usually works:

1. enters the target value to memory scanner program,

2. Program sends memory address that contain the entered
value,

3. If the program sends multiple memory addresses, then
change the current in-game value to a new state, either
by decreasing or increasing it. Then do another scan
with the new value,

4. Repeat until you are sure that this is the correct memory
address.

Besides being easier to use, this method is also harder to detect
by anti-debugger. That’s why this method is more commonly
used, especially by beginner cheaters.

III. DESIGN CONSIDERATIONS

A. Kernel-level vs user-level anti-cheat

There’s already a lot of anti-tampering methods being used
in many anti-cheats with their strengths and weaknesses. One of
them is by using kernel-level anti-cheat, which gives the most
protection against memory tampering. This is because kernel-
level anti-cheat run on kernel which gives it high privilege on
process’s memory, this also makes it harder for hackers to detect
and see. Even though this sounds like the perfect choice, it
doesn’t come without any risk. The fatal problem with this
method is the fact that it literally accesses the computer’s kernel
directly. This can open a door for hackers to inject malicious
malware and viruses. The slightest vulnerability is all it takes for
hackers to completely have control over every user of the game.
Which is why kernel level anti-cheat has become controversial.
As opposed to kernel level anti-cheat, user-level anti-cheat
relative easier to hack, because it runs on user-level process,
which can be easily detected and seen by hackers. With that
being considered, as already mentioned in the introduction, we
will implement user-level anti-cheat.

B. Design Generation and Threat Analysis

Our main threat for now is debugging and memory scanning.
Let’s assume that hacker can:

1. Bypass any anti-debugging technique except breakpoint
prevention,

2. Understand the program workflow,

3. Find the memory address of any value they wanted,

4. Read and write every memory address.

With that in mind, these are the design ideas the author proposed
with short explanations of why it can be used but also its
vulnerabilities

1) Simple validation check
 This is by comparing our value with a copy of it that is
stored in another address. But hacker can just find both
memory addresses and change both the values.

2) Integrity check with sha-256
By making a sha-256 hash of the value and scatter the

hash values, we can make it harder for hacker to find the sha-
256. But, with enough time hacker can understand that it
used sha-256 so they can just use the same algorithm to make
a new hash value for the new hash value.

3) validation check with symmetric key encryption
by encrypting the value and storing the ciphered value,

then check if the value and ciphered value is the same after
decoded. With this, the hacker will have to search for
addresses of the value, ciphered value, and key. This design
would make it difficult for hacker to tamper the memory, but
if the hacker can understand the program workflow, then it
wouldn’t be impossible to find these three addresses and use
the same encoding algorithm to change the encrypted value
and the value itself, therefore bypassing the validation check.

4) Validation Checks with Digital Signature

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 By using digital signature, we can assure that only
authorized programs with private key — like server, or
another separate process — can change the targeted value. If
the hacker can’t find the private key, then it would be
impossible to change the validation value aka the hash value
that is used for comparison for integrity check. But of course,
if hackers can find the private key, they can do anything they
want.

C. Final Design and Algorithm

Considering all the strengths and weaknesses and assuming
that user can’t put breakpoint, the last idea seems to be the most
optimal option. That’s why we will discuss further on the
algorithm and farther the implementation of this design.

As mentioned before, implementing validation checks with
digital signature requires a way to hide the private key. This can
be done by separating the game into 2 processes: the game itself
with the verification algorithm, and another process to make the
digital signature. By assuming that hacker won’t be able to see
the signing process, we can implement this design. Now, we can
move on to how the algorithm works.

1. The signer program generates key pairs. The public key
will be sent to the main program, and the private key
will be kept secret,

2. The main program sends the current targeted value to
signer program,

3. The signer program will receive the current targeted
value, generate digital signature of it, and send it to the
main program,

4. If the target value needs to be checked, the main
program will decrypt the digital signature and verify if
the current value is the same as the one in digital
signature. If the value is invalid, then the program will
be topped

IV. IMPLEMENTATION

In this implementation, author used c language to make a
simple rock paper scissor game with score system. Let’s say that
hacker try to change the value of the score and we try to prevent
it from being modified. With the proposed design, this is the
result implementation. The source code is separated into 4
different files which are “RSA.c”, “Hash.c”, “Main.c”, and
“Signer.c”.

To simulate server-client communication, in this
implementation we will be using 2 program, first program is the
main game in the “Main.c” and the second is the digital signature
generator in “Signer.c”. these two processes will communicate
using txt file named “message.txt” which used for sending
message from main game process to signer process, and another
one named “transfer.txt” which used for sending message from
signer process to main game process.

A. RSA.c

The “RSA.c” source code contains the RSA key generation,

decryption and encryption algorithm.

1) Prime(num)

This function is used for checking if num is a prime or

not.

// Check if the input number is a prime

number or not

bool prime(ull num){

 if(num == 0 || num == 1){

 return false;

 }

 for(int i = 2; i < num; i++){

 if (num % i == 0 && i != num){

 return false;

 }

 }

 return true;

}
2) generate_random_prime(min, max)

Generate random prime number between max and

min.

// Generate a random prime number between

min and max

ull generate_random_prime(ull min, ull

max){

 ull num;

 do{

 num = (rand() % (max - min + 1)) +

min;

 }while(!prime(num));

 return num;

}
3) gcd(num1,num2)

Calculate the greatest common divisor of num1 and

num2 using euclidean algorithm.

// Find the Greatest Common Divisor between

two numbers

int gcd(ull num1, ull num2){

 ull temp;

 while(num2 > 0){

 temp = num1 % num2;

 num1 = num2;

 num2 = temp;

 }

 return (int)num1;

}

4) modInverse(A,M)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

used to calculate the inverse modulus of A (mod M)

// Calculate the modular inverse of u mod v

// d = (1/e) mod n

ull modInverse(ull A, ull M){

 for (ull X = 1; X < M; X++){

 if (((A % M) * (X % M)) % M == 1){

 return X;

 }

 }

 return -1; // Inverse doesn't exist

}
5) generate_private_key

Generate the private key for the RSA encryption from

the input phi. Phi is 𝜙(𝑛).

// generate a private key

// e is the public key, which is coprime to

phi

// e will be used to encrypt the message

ull generate_private_key(ull phi){

 ull key;

 do{

 key = rand() % (phi - 2) + 2;

 }while(gcd(key,phi) != 1 && key > 1 &&

key < phi);

 return key;

}
6) power(base,expo,m)

Calculate 𝑏𝑎𝑠𝑒𝑒𝑥𝑝𝑜(𝑚𝑜𝑑 𝑚)

// The Modular Exponentiation Algorithm

ull power(ull base, ull expo, ull m) {

 long long res = 1;

 long long b = base % m;

 while (expo > 0) {

 if (expo % 2 == 1)

 res = (res * b) % m;

 b = (b * b) % m;

 expo = expo / 2;

 }

 return (res % m);

}

7) generate_key_pair

generate encryption key e and decryption key d and

the modulo n using RSA algorithm

// Generate private(e), public keys(d), and

modulus(n)

void generate_key_pair(ull *n, ull *e, ull

*d) {

 srand(time(NULL));

 ull p, q, phi;

 do {

 // Generate two distinct random prime

numbers p and q

 p = generate_random_prime(100,

999);

 q = generate_random_prime(100,

999);

 } while (p == q);

 // Calculate n

 *n = p * q;

 // Calculate phi(n)

 phi = (p - 1) * (q - 1);

 // Generate private key

 *e = generate_private_key(phi);

 // Calculate public key d

 *d = modInverse(*e, phi);

}
8) encode(input data, input e, input n, output enc, output

len)

encode the plain data into cipher text with the length

of len using RSA encoding algorithm with the encryption

key e and moduluo n

//encode the data using the private key (e,

n)

void encode(unsigned char *data, ull e, ull

n, ull enc[], int *len){

 int i = 0;

 while(data[i] != '\0' && data[i] !=

'\n'){

 enc[i] = power((ull) data[i], e, n);

 (*len)++;

 i++;

 }

}

9) decode(input enc, input d, input n, int len, output dec)

deocde the cypher text enc with the length of len back

to it’s plain text dec using RSA decryption algorithm with

the decryption key d and moduluo n

// decode the data using the public key (d,

n)

void decode(ull enc[], ull d, ull n, int

len, ull dec[]){

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 for(int i = 0; i < len; i++){

 dec[i] = power(enc[i], d, n);

 }

}

B. Hash.c

The “Hash.c” source code contains the implementation
sha256 hashing algorithm. This implementation uses the openssl
library to compute the hash value

1. Hash_to_str(data)

 This function takes input arbitrary string of data and
returns its hash value in the form of string

char* Hash_To_Str(char* data) {

 int strLen = strlen(data);

 unsigned char hash[32];

 char* hashStr = malloc(65);

 strcpy(hashStr, "");

 unsigned char str2[32];

 SHA256("hello world",strlen("hello

world"),hash);

 char s[3];

 for (int i = 0; i < 32; i++) {

 sprintf(s, "%02x", hash[i]);

 strcat(hashStr, s);

 }

 return hashStr;

}

C. Main.c

The “MAIN.c” source code contains the main game and the
validation check. The targeted value “score” is stored as global
variable.

int score = -1;
1) update(win)
 This function will be used to update the value of score
also to send the new score value to signer process.

void update(int win){

 if (win==1){

 score++;

 } else{

 score--;

 }

 FILE *message = fopen("message.txt",

"w");

 fprintf(message, "%d\n", 1);

 fprintf(message, "%d",score);

 fclose(message);

 int check;

 do{

 message = fopen("message.txt",

"r");

 fscanf(message, "%d", &check);

 if (check == 0) {

 fclose(message);

 break;

 }

 fclose(message);

 } while(check==1);

 printf("%d\n",score);

}
2) read()

This function will be used to read messages from signer
process, and decrypt the message, returning the original hash
value.

unsigned char *read(){

 unsigned char

*hash=malloc(sizeof(char)*64);

 unsigned long long n, e, d;

 unsigned long long enc[64], dec[64];

 FILE *tranfer = fopen("transfer.txt",

"r");

 if (tranfer == NULL) {

 perror("Error opening file");

 return NULL;

 }

 fscanf(tranfer, "%llu %llu\n", &n, &d);

 for (int i = 0; i < 64; i++)

 {

 fscanf(tranfer, "%llu", &enc[i]);

 }

 fclose(tranfer);

 decode(enc, d, n, 64, dec);

 for (int i = 0; i < 64; i++) {

 sprintf(&hash[i],"%c", (unsigned

char)dec[i]);

 }

 return hash;

 fclose(tranfer);

}

3) check()

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 This function will be used for validity checking and
will stop the program if memory tampering happens.

void check(){

 char *Check=read();

 char msg[99];

 sprintf(msg,"%d",score);

 unsigned char *hash=Hash_To_Str(msg);

 if(strcmp(Check,hash)){

 printf("original hash =

%s\n",Check);

 printf("changed hash= %s\n",hash);

 printf("data tampering

detected\n");

 exit(0);

 }

 free(hash);

 free(Check);

}

4) play()
 This function is used to decide if the player wins or not
and update the score accordingly.

void play(int player) {

 int computer = rand() % 3;

 if (player == computer) {

 printf("Draw\n\n");

 } else if ((player == 0 && computer ==

1) || (player == 1 && computer == 2) ||

(player == 2 && computer == 0)) {

 printf("You lose\n\n");

 update(-1);

 } else {

 printf("You win\n\n");

 update(1);

 }

}

5) main()
 This is the main gameloop.

int main() {

 int choice;

 update(1);

 srand(time(NULL));

 while(1){

 check();

 printf("Your Choice\n(1: Rock, 2:

Paper, 3: Scissors)\n");

 scanf("%d", &choice);

 if (choice==0) {

 break;

 }

 play(choice-1);

 printf("Current Score: %d\n",

score);

 }

 system("pause");

 return 0;

}

D. Signer.c

The “Signer.c” source code contains the digital signature
generator Program that will be used to make digital signature of
the data.

unsigned long long n, e, d;

int main(){

 generate_key_pair(&n, &e, &d);

 while(1){

 FILE *message =

fopen("message.txt", "r+");

 char msg[100];

 int check;

 fscanf(message, "%d", &check);

 if (check == 0) {

 fclose(message);

 continue;

 }else if(check==2){

 break;

 }

 fscanf(message, "%s", msg);

 //make hash

 unsigned char

*hash=Hash_To_Str(msg);

 printf("%s\n", hash);

 //encode with rsa

 unsigned long long enc[1000];

 int len = 0;

 encode(hash, e, n, enc, &len);

 //send the encoded message to

transfer.txt

 FILE *tranfer =

fopen("transfer.txt", "w");

 if (tranfer == NULL) {

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 perror("Error opening file");

 return 1;

 }

 fprintf(tranfer, "%llu %llu\n",

n,d);

 for (int i = 0; i < len; i++)

 {

 fprintf(tranfer, "%llu ",

enc[i]);

 }

 fseek(message, 0, SEEK_SET);

 fprintf(message, "%d\n", 0); //to

tell program that the message has been

processed

 fflush(message);

 fclose(tranfer);

 fclose(message);

 }

}

V. RESULT

A. Without Anti-Cheat

Using memory scanner such as cheat engine let us to do
memory tampering, once we find the memory address, as
demonstrated in fig 5.1, fig 5.2, and fig 5.3

Fig 5.1 finding the memory address

Fig 5.2 changing the target value

Fig 5.3 value successfully tampered

B. Using Proposed Anti-cheat system

By running signer process, before running the program and
did the same momory tampering as before, we obtain the
following result as shown in fig 5.4

Fig 5.6 data tampering detected

VI. CONCLUSION

cryptographic techniques such as hash functions and
asymmetric key encryption indeed can be implemented in a
user-level anti-cheat system to prevent memory tampering. but
just like any user level anti-cheat, this implementation is not free
from vulnerability, if hacker manages to obtain the private key,
or if hacker manages to put breakpoint in our program, then it’s
a game over for our anti cheat system. Therefore, further
research will be needed to farther enhance the security of this
anti-cheat implementation. This code’s implementation can also
be implemented in any other games, it just needs several
adjustments to the game’s source code.

ACKNOWLEDGMENT

Praise be to God Almighty for His grace, the paper with the
title “Implementation of Hash Function and Asymmetric Key
Encryption to Prevent Memory Tampering in Game's Anti-
Cheat Systems” can be completed properly. The author would
also like to thank the lecturer of K02 IF1220 - Discrete
Mathematics, Arrival Dwi Sentosa, S.Kom., M.T. for the
knowledge that has been taught during lectures so that the author
can complete this paper smoothly. In addition, the author also
wants to thank everybody who has given their support to the
author in completing this research paper.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

ATTACHMENT

Github link: implementation code's Github link

REFERENCES

[1] R. Munir, “Teori Bilangan (Bagian 1),” Mata Kuliah Matematika Diskrit,
Institut Teknologi Bandung, 2024. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-
Teori-Bilangan-Bagian1-2024.pdf

[2] R. Munir, “Deretan, Rekursi, dan Relasi Rekurens (Bagian 2),” Mata
Kuliah Matematika Diskrit, Institut Teknologi Bandung, 2024. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/11-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian2)-2024.pdf

[3] R. Munir, “Fungsi Hash,” Mata Kuliah Kriptografi, Institut Teknologi
Bandung, 2024. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-
2024/24-Fungsi-hash-2024.pdf

[4] R. Munir, “Algoritma RSA,” Mata Kuliah Kriptografi, Institut Teknologi
Bandung, 2024. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-
2024/18-Algoritma-RSA-2024.pdf

[5] R. Munir, “Kriptografi Kunci Publik,” Mata Kuliah Kriptografi, Institut
Teknologi Bandung, 2024. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-
2024/17-Kriptografi-Kunci-Publik-2024.pdf

[6] Statista, “Video games - statistics & facts,” Statista, 2024. [Online].
Available: https://www.statista.com/topics/868/video-
games/#topicOverview

[7] D. Sharma, “Securing your data: An in-depth look at hashing and integrity
verification,” Medium, Oct. 2023. [Online]. Available:
https://deepaksharma2007.medium.com/securing-your-data-an-in-depth-
look-at-hashing-and-integrity-verification-c969a4e9d2db

[8] GeeksforGeeks, “RSA Algorithm in Cryptography,” GeeksforGeeks,
[Online]. Available: https://www.geeksforgeeks.org/computer-
networks/rsa-algorithm-cryptography/

[9] GeeksforGeeks, “What is Asymmetric Encryption?,” GeeksforGeeks,
[Online]. Available: https://www.geeksforgeeks.org/computer-
networks/what-is-asymmetric-encryption/

[10] GeeksforGeeks, “SHA-256 and SHA-3,” GeeksforGeeks, [Online].
Available: https://www.geeksforgeeks.org/computer-networks/sha-256-
and-sha-3/

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Zeki Amani

 13524082

https://github.com/Zekiamani1/SImple-Game-Anti-Cheat-Implementation
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-Teori-Bilangan-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-Teori-Bilangan-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/11-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian2)-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/11-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian2)-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/24-Fungsi-hash-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/24-Fungsi-hash-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/18-Algoritma-RSA-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/18-Algoritma-RSA-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/17-Kriptografi-Kunci-Publik-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/17-Kriptografi-Kunci-Publik-2024.pdf
https://www.statista.com/topics/868/video-games/#topicOverview
https://www.statista.com/topics/868/video-games/#topicOverview
https://deepaksharma2007.medium.com/securing-your-data-an-in-depth-look-at-hashing-and-integrity-verification-c969a4e9d2db
https://deepaksharma2007.medium.com/securing-your-data-an-in-depth-look-at-hashing-and-integrity-verification-c969a4e9d2db
https://www.geeksforgeeks.org/computer-networks/rsa-algorithm-cryptography/
https://www.geeksforgeeks.org/computer-networks/rsa-algorithm-cryptography/
https://www.geeksforgeeks.org/computer-networks/what-is-asymmetric-encryption/
https://www.geeksforgeeks.org/computer-networks/what-is-asymmetric-encryption/
https://www.geeksforgeeks.org/computer-networks/sha-256-and-sha-3/
https://www.geeksforgeeks.org/computer-networks/sha-256-and-sha-3/

